

GUIA DE APRENDIZAGEM Ensino Médio/Ensino Fundamental

Felipe Lazari Física 3º Série A, B, C e D 2º Bimestr	Professor:	Componente Curricular:	Ano/Turma	Bimestre:
	Felipe Lazari	Física	-	2º Bimestre

Justificativa

Com base no Currículo Paulista, este Guia de Aprendizagem visa desenvolver as competências e habilidades do Componente de Física e os princípios do Programa Ensino Integral, tais como: a Pedagogia da Presença, o Protagonismo, os Quatro Pilares da Educação e a Educação Interdimensional.

Aproximação com a realidade do estudante

Você já se perguntou como se dão as trocas de calor em diferentes materiais? Como funcionam os refrigeradores? Neste bimestre, dentro do Componente de Fìsica, você e seus colegas serão desafiados a explorar a área da calorimetria. A partir dela, juntos poderão analisar a diferença entre o calor sensível e latente; compreender as mudanças de estado e as trocas de energia; investigar os gases perfeitos, suas grandezas e o modelo microscópico do gás ideal; refletir sobre termodinâmica, entendendo assim a 1ª Lei da Termodinâmica e como ela funciona. Por fim, ainda poderão aprender sobre a 2ª Lei da Termodinâmica e comoela se relaciona com o funcionamento de refrigeradores. Prepare-se para uma jornada interessante no mundo da Física! Bons estudos!

	Título	Conteúdos	Objetivos
1	Calor sensível (mudança de temperatura sem mudança de estado físico)	Calorimetria.	Compreender e analisar o conceito de calor sensível.
2	Calor latente: mudança de estado e a energia envolvida	• Calorimetria.	 Compreender o conceito de calor latente em diversas situações físicas. Compreender a noção de equilíbrio térmico com mudanças de estado físico.
3	Trocas de calor: entendendo a transferência de energia	• Calorimetria.	 Compreender as trocas de calor: explicar como a energia térmica é transferida entre sistemas em diferentes temperaturas. Desenvolver estratégias de resolução: aplicar métodos para resolver problemas que envolvam tanto calor sensível quanto calor latente. Resolver problemas de calor: calcular trocas de calor em situações práticas utilizando os conceitos abordados.
4	Gases perfeitos (grandezas macroscópicas)	Gases perfeitos.	Compreender as principais grandezas macroscópicas que caracterizam um

			gás: pressão, volume, temperatura e seu número de partículas.
5	Modelo microscópico do gás ideal	 Gases perfeitos. 	 Investigar as relações entre as variáveis de estado (pressão, volume e temperatura) e o número de mols de um gás ideal. Compreender a lei geral dos gases. Analisar a equação de Clapeyron.
6	Modificando a energia interna de um gás	Gases perfeitos.	Compreender o conceito de trabalho realizado por e sobre um gás e como isso modifica sua energia interna.
7	Retomando e aprofundando aprendizagem	 Calorimetria e gases perfeitos. 	 Rever e aprofundar conceitos sobre o estudo da calorimetria e dos gases perfeitos.
8	1º lei da termodinâmica	• Termodinâmica.	 Identificar que o calor pode também variar a energia interna de um gás. Compreender a 1ª lei da termodinâmica.
9	Ciclos termodinâmicos	• Termodinâmica.	 Analisar as características de um ciclo termodinâmico, evidenciando as principais grandezas físicas envolvidas.
10	Mais 1ª lei da termodinâmica	• Termodinâmica.	 Analisar, por meio de exercícios, o uso da 1º lei da termodinâmica.
11	Calores específicos dos gases perfeitos	• Termodinâmica.	 Compreender a relação entre o calor específico a pressão constante (Cp) e o calor específico a volume constante (Cv) nos gases perfeitos, incluindo a derivação da relação entre eles e a constante dos gases, através da equação de Mayer
12	Máquinas térmicas e 2ª lei da termodinâmica	• Termodinâmica.	 Compreender o que são as máquinas térmicas, através de seus ciclos de funcionamento, evidenciando as principais grandezas físicas envolvidas.
13	Ciclo de Carnot	• Termodinâmica.	Identificar e compreender o ciclo de Carnot.
14	Refrigeradores	• Termodinâmica.	 Compreender o funcionamento de um refrigerador e sua conexão com a 2ª lei da termodinâmica.

Metodologias	Ambientes de Aprendizagem
 Aula expositiva; construção de conceitos a respeito dos 	Sala de aula;
fenômenos abordados; demonstração de fenômenos que permeiam o dia a dia; resolução de exercícios, rotação	Sala de leitura;
por estações, sala de aula invertida, virem e conversem	Sala Maker/ Física;
(Lemov), peer instruction.	Pátio.
>	

Critérios de Avaliação

Participação em aula (A);

Listas de exercícios (L);

Avaliação bimestral (B);

Prova paulista (P);

Trabalhos de pesquisa (T);

Participação no TarefaSP (S).

$$M\acute{e}dia = \frac{4P + 2B + 2L + S + (A + T)}{10}$$

Fontes de pesquisa para o estudante

CMSP WEB ou APP: Atividades: https://cmspweb.ip.tv/

Sites:

- INSTITUTO NACIONAL DE ESTUDOS E PESQUISAS EDUCACIONAIS ANÍSIO TEIXEIRA (INEP). Exame Nacional do Ensino Médio (ENEM), 2023. Prova de Linguagens, Códigos e suas Tecnologias e Redação; Prova de Ciências Humanas e suas Tecnologias, 10 dia, Caderno 1 Azul. Disponível em:
 https://arquivos.qconcursos.com/prova/arquivo prova/101194/inep-2023-enem-examenacional-do-ensino-medio-primeiro-e-segundo-dia-edital-2023-prova.pdf Acesso em: 17 out. 2024.
- PHET. Gases: Introdução, [s.d.]. Disponível em: https://phet.colorado.edu/sims/html/gasesintro/1.1.0/gases-intro pt BR.html. Acesso em: 28 out. 2024.
- MAYYSKIYYSERGEYY. Processo isobárico, isocórico e isotérmico em gás ideal. (CC BY-SA 4.0). Disponível em: https://commons.wikimedia.org/wiki/File:Isobaric, isochoric and isothermal process in ideal gas.png. Acesso em: 16 set. 2024.
- TECHENFIM RAFAEL PIRES. PowerPoint tutorial: dicas de apresentação [infográfico 8 passos]. YouTube, 15 jun. 2019. Disponível em: https://www.youtube.com/watch?v=yfTYrluyYtQ. Acesso em: 25 nov. 2024.
- Modelo de um Gás Ideal | TERMOLOGIA. Disponível em: https://youtu.be/LtCPQIsnc-8?si=mmoDGQ-aHoGJ6mAk. Acesso em: 14 Fev. 2025;
- TERMODINÂMICA | QUER QUE DESENHE | DESCOMPLICA. Disponível em: https://youtu.be/GYxXCr6HXcw?si=mpM4NBzK1KEiwGi. Acesso em: 14 Fev. 2025;
- A Primeira Lei da Termodinâmica Explicada. Disponível em: https://youtu.be/U_2AJc1mcas?si=gY7yhB10ufwK5wHL. Acesso em: 14 Fev. 2025;

- CALORIMETRIA: UM SUPER MAPA MENTAL | QUER QUE DESENHE. Disponível em: https://youtu.be/T5VeHW1cslo?si=bS5uNYP_AlQ1idJR. Acesso em: 14 Fev. 2025;
- UNIVERSIDADE ESTADUAL DE CAMPINAS (UNICAMP). Vestibular 2017 1ª Fase. Conhecimentos Gerais.
 Disponível em: https://www.comvest.unicamp.br/wpcontent/uploads/2017/02/f12017QY.pdf Acesso em: 7 nov. 2024.
- UNIVERSIDADE ESTADUAL DE CAMPINAS (Unicamp). Vestibular Nacional, 2017. 1º Fase, Redação e Questões. Disponível em: https://www.comvest.unicamp.br/vest2007/F1/fase1.pdf Acesso em: 20 nov. 2024.
- UNIVERSIDADE ESTADUAL DO CEARÁ (Uece). Vestibular, 2015. 2ª Fase, 2º Dia, Física e Química. Disponível em: https://arquivos.qconcursos.com/prova/arquivo prova/71782/uece-cev-2014-uece-vestibular-fisica-e-quimica-prova.pdf Acesso em: 20 nov. 2024.
- UNIVERSIDADE FEDERAL DE SÃO CARLOS (Ufscar). Vestibular, 2006. Provas de Biologia, de Física e de Geografia. Disponível em: https://www.curso-objetivo.br/vestibular/resolucao-comentada/ufscar/2006/3dia/UFSCAR2006 3dia prova.pdf Acesso em: 20 nov. 2024.
- UNIVERSIDADE FEDERAL FLUMINENSE (UFF). Vestibular, 2002. 1º etapa, parte 2. Disponível em: http://www.coseac.uff.br/vest2002/provas1etapa.htm Acesso em: 20 nov. 2024.
- ACADEMIA DA FORÇA AÉREA (AFA). Exame de admissão ao CFOAV/CFOINT/CFOINF 2012. Disponível em: https://www.concursosmilitares.com.br/provas-anteriores/aeronautica/afa/afa2012.pdf Acesso em: 27 nov. 2024
- UNIVERSIDADE DE PERNAMBUCO (UPE). Sistema Seriado de Avaliação 2016, 2ª Fase. Caderno de prova 1º dia.
 Disponível em: https://processodeingresso.upe.pe.gov.br/processo2016/arquivos/ssa2/PROVA-SSA2-1-DIA.pdf
 Acesso em: 27 nov. 2024.
- PONTIFÍCIA UNIVERSIDADE CATÓLICA MINAS GERAIS (PUC-MG). Vestibular 2004. Disponível em:
 http://projetoseeduc.cecierj.edu.br/eja/recurso-multimidia-professor/fisica/novaeja/m2u05/ListadeExercicios-Unidade10.pdf
 Acesso em: 27 nov. 2024.
- ACADEMIA DA FORÇA AÉREA (AFA). Exame de admissão ao CFOAV/CFOINT/CFOINF 2012. Disponível em: https://www.concursosmilitares.com.br/provas-anteriores/aeronautica/afa/afa2012.pdf Acesso em: 27 nov. 2024.
- INSTITUTO NACIONAL DE ESTUDOS E PESQUISAS EDUCACIONAIS ANÍSIO TEIXEIRA (INEP). Exame Nacional do Ensino Médio (ENEM), 2001. Prova amarela - 1. Disponível em: https://download.inep.gov.br/educacao basica/enem/provas/2001/2001 amarela.pdf Acesso em: 27 nov. 2024.